Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae
نویسندگان
چکیده
BACKGROUND Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO2 biomitigation applications. RESULTS Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris. Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris. Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (~ 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems. CONCLUSIONS Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO2 biomitigation uses.
منابع مشابه
Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production
BACKGROUND Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate...
متن کاملA warm welcome for alternative CO 2 fixation pathways in microbial biotechnology
Biological CO2 fixation is a crucial process carried out by plants and a number of microorganisms, which can be harnessed for both agriculture and sustainable, biobased production of fuels and chemicals. Fixation of CO2 by plants enables the production of food, feed, fuels and chemicals. Additionally, fixation of CO2 by autotrophic microorganisms such as cyanobacteria and microalgae can be empl...
متن کاملSelection of optimal microalgae species for CO2 sequestration
CO2 fixation by photoautotrophic algal cultures has the potential to diminish the release of CO2 into the atmosphere, helping alleviate the trend toward global warming. To realize workable biological CO2 fixation systems, selection of optimal microalgae species is vital. The selection of optimal microalgae species depends on specific strategies employed for CO2 sequestration. In this paper, the...
متن کاملThe Early Origins of Terrestrial C4 Photosynthesis
The C4 photosynthetic pathway is a series of structural and biochemical modifications around the more primitive C3 pathway that improve the photosynthetic efficiency under specific climatic conditions. Hence, the origin and subsequent geographical expansion of the C4 plants likely reflects a record of climate change. Multiple paleoatmospheric pCO2 proxies indicate a critical CO2 threshold was b...
متن کاملReal-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with conc...
متن کامل